Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling Issues in Bibliometric Analysis (1401.2254v2)

Published 10 Jan 2014 in stat.AP, cs.DL, and physics.data-an

Abstract: Bibliometricians face several issues when drawing and analyzing samples of citation records for their research. Drawing samples that are too small may make it difficult or impossible for studies to achieve their goals, while drawing samples that are too large may drain resources that could be better used for other purposes. This paper considers three common situations and offers advice for dealing with each. First, an entire population of records is available for an institution. We argue that, even though all records have been collected, the use of inferential statistics, significance testing, and confidence intervals is both common and desirable. Second, because of limited resources or other factors, a sample of records needs to be drawn. We demonstrate how power analyses can be used to determine in advance how large the sample needs to be to achieve the study's goals. Third, the sample size may already be determined, either because the data have already been collected or because resources are limited. We show how power analyses can again be used to determine how large effects need to be in order to find effects that are statistically significant. Such information can then help bibliometricians to develop reasonable expectations as to what their analysis can accomplish. While we focus on issues of interest to bibliometricians, our recommendations and procedures can easily be adapted for other fields of study.

Citations (45)

Summary

We haven't generated a summary for this paper yet.