Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on optimization approaches to text document clustering (1401.2229v1)

Published 10 Jan 2014 in cs.IR

Abstract: Text Document Clustering is one of the fastest growing research areas because of availability of huge amount of information in an electronic form. There are several number of techniques launched for clustering documents in such a way that documents within a cluster have high intra-similarity and low inter-similarity to other clusters. Many document clustering algorithms provide localized search in effectively navigating, summarizing, and organizing information. A global optimal solution can be obtained by applying high-speed and high-quality optimization algorithms. The optimization technique performs a globalized search in the entire solution space. In this paper, a brief survey on optimization approaches to text document clustering is turned out.

Citations (61)

Summary

We haven't generated a summary for this paper yet.