Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Computational Complexity of Propositional Cirquent Calculus (1401.1849v4)

Published 8 Jan 2014 in cs.LO

Abstract: Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent calculus. The advent of cirquent calculus arose from the need for a deductive system with a more explicit ability to reason about resources. Unlike the more traditional proof-theoretic approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus is based on circuit-style structures called cirquents, in which different "peer" (sibling, cousin, etc.) substructures may share components. It is this resource sharing mechanism to which cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus has been paired with an abstract resource semantics. This semantics allows for reasoning about the interaction between a resource provider and a resource user, where resources are understood in the their most general and intuitive sense. Interpreting resources in a more restricted computational sense has made cirquent calculus instrumental in axiomatizing various fundamental fragments of Computability Logic, a formal theory of (interactive) computability. The so-called "classical" rules of cirquent calculus, in the absence of the particularly troublesome contraction rule, produce a sound and complete system CL5 for Computability Logic. In this paper, we investigate the computational complexity of CL5, showing it is $\Sigma_2p$-complete. We also show that CL5 without the duplication rule has polynomial size proofs and is NP-complete.

Citations (10)

Summary

We haven't generated a summary for this paper yet.