Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

"Information-Friction" and its implications on minimum energy required for communication (1401.1059v2)

Published 6 Jan 2014 in cs.IT, cs.CC, math-ph, math.IT, and math.MP

Abstract: Just as there are frictional losses associated with moving masses on a surface, what if there were frictional losses associated with moving information on a substrate? Indeed, many modes of communication suffer from such frictional losses. We propose to model these losses as proportional to "bit-meters," i.e., the product of mass of information (i.e., the number of bits) and the distance of information transport. We use this "information- friction" model to understand fundamental energy requirements on encoding and decoding in communication circuitry. First, for communication across a binary input AWGN channel, we arrive at fundamental limits on bit-meters (and thus energy consumption) for decoding implementations that have a predetermined input-independent length of messages. For encoding, we relax the fixed-length assumption and derive bounds for flexible-message- length implementations. Using these lower bounds we show that the total (transmit + encoding + decoding) energy-per-bit must diverge to infinity as the target error probability is lowered to zero. Further, the closer the communication rate is maintained to the channel capacity (as the target error-probability is lowered to zero), the faster the required decoding energy diverges to infinity.

Citations (25)

Summary

We haven't generated a summary for this paper yet.