Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity (1401.0688v2)

Published 3 Jan 2014 in stat.ME

Abstract: This paper considers quantile regression for a wide class of time series models including ARMA models with asymmetric GARCH (AGARCH) errors. The classical mean-variance models are reinterpreted as conditional location-scale models so that the quantile regression method can be naturally geared into the considered models. The consistency and asymptotic normality of the quantile regression estimator is established in location-scale time series models under mild conditions. In the application of this result to ARMA-AGARCH models, more primitive conditions are deduced to obtain the asymptotic properties. For illustration, a simulation study and a real data analysis are provided.

Summary

We haven't generated a summary for this paper yet.