Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New explicit thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity and their applications (1312.6813v3)

Published 24 Dec 2013 in math.NA and cs.CV

Abstract: The least-square regression problems or inverse problems have been widely studied in many fields such as compressive sensing, signal processing, and image processing. To solve this kind of ill-posed problems, a regularization term (i.e., regularizer) should be introduced, under the assumption that the solutions have some specific properties, such as sparsity and group sparsity. Widely used regularizers include the $\ell_1$ norm, total variation (TV) semi-norm, and so on. Recently, a new regularization term with overlapping group sparsity has been considered. Majorization minimization iteration method or variable duplication methods are often applied to solve them. However, there have been no direct methods for solve the relevant problems because of the difficulty of overlapping. In this paper, we proposed new explicit shrinkage formulas for one class of these relevant problems, whose regularization terms have translation invariant overlapping groups. Moreover, we apply our results in TV deblurring and denoising with overlapping group sparsity. We use alternating direction method of multipliers to iterate solve it. Numerical results also verify the validity and effectiveness of our new explicit shrinkage formulas.

Citations (4)

Summary

We haven't generated a summary for this paper yet.