Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logarithmic Superconformal Minimal Models (1312.6763v2)

Published 24 Dec 2013 in hep-th

Abstract: The higher fusion level logarithmic minimal models LM(P,P';n) have recently been constructed as the diagonal GKO cosets (A_1{(1)})_k oplus (A_1{(1)})_n / (A_1{(1)})_{k+n} where n>0 is an integer fusion level and k=nP/(P'-P)-2 is a fractional level. For n=1, these are the logarithmic minimal models LM(P,P'). For n>1, we argue that these critical theories are realized on the lattice by n x n fusion of the n=1 models. For n=2, we call them logarithmic superconformal minimal models LSM(p,p') where P=|2p-p'|, P'=p' and p,p' are coprime, and they share the central charges of the rational superconformal minimal models SM(P,P'). Their mathematical description entails the fused planar Temperley-Lieb algebra which is a spin-1 BMW tangle algebra with loop fugacity beta_2=x2+1+x{-2} and twist omega=x4 where x=e{i(p'-p)pi/p'}. Examples are superconformal dense polymers LSM(2,3) with c=-5/2, beta_2=0 and superconformal percolation LSM(3,4) with c=0, beta_2=1. We calculate the free energies analytically. By numerically studying finite-size spectra on the strip with appropriate boundary conditions in Neveu-Schwarz and Ramond sectors, we argue that, in the continuum scaling limit, these lattice models are associated with the logarithmic superconformal models LM(P,P';2). For system size N, we propose finitized Kac character formulas whose P,P' dependence only enters in the fractional power of q in a prefactor. These characters involve Motzkin and Riordan polynomials defined in terms of q-trinomial coefficients. Using the Hamiltonian limit, we argue that there exist reducible yet indecomposable representations for which the Virasoro dilatation operator L_0 exhibits rank-2 Jordan blocks confirming that these theories are indeed logarithmic. We relate these results to the N=1 superconformal representation theory.

Summary

We haven't generated a summary for this paper yet.