Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traveling waves for a bistable equation with nonlocal-diffusion (1312.6304v1)

Published 21 Dec 2013 in math.AP

Abstract: We consider a single component reaction-diffusion equation in one dimension with bistable nonlinearity and a nonlocal space-fractional diffusion operator of Riesz-Feller type. Our main result shows the existence, uniqueness (up to translations) and stability of a traveling wave solution connecting two stable homogeneous steady states. In particular, we provide an extension to classical results on traveling wave solutions involving local diffusion. This extension to evolution equations with Riesz-Feller operators requires several technical steps. These steps are based upon an integral representation for Riesz-Feller operators, a comparison principle, regularity theory for space-fractional diffusion equations, and control of the far-field behavior.

Summary

We haven't generated a summary for this paper yet.