Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise (parts 1 and 2 combined) (1312.5641v3)

Published 19 Dec 2013 in cs.IT and math.IT

Abstract: This work studies the recursive robust principal components analysis (PCA) problem. If the outlier is the signal-of-interest, this problem can be interpreted as one of recursively recovering a time sequence of sparse vectors, $S_t$, in the presence of large but structured noise, $L_t$. The structure that we assume on $L_t$ is that $L_t$ is dense and lies in a low dimensional subspace that is either fixed or changes "slowly enough". A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background ($L_t$) from moving foreground objects ($S_t$) on-the-fly. To solve the above problem, in recent work, we introduced a novel solution called Recursive Projected CS (ReProCS). In this work we develop a simple modification of the original ReProCS idea and analyze it. This modification assumes knowledge of a subspace change model on the $L_t$'s. Under mild assumptions and a denseness assumption on the unestimated part of the subspace of $L_t$ at various times, we show that, with high probability (w.h.p.), the proposed approach can exactly recover the support set of $S_t$ at all times; and the reconstruction errors of both $S_t$ and $L_t$ are upper bounded by a time-invariant and small value. In simulation experiments, we observe that the last assumption holds as long as there is some support change of $S_t$ every few frames.

Citations (2)

Summary

We haven't generated a summary for this paper yet.