Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Numerical solution of saddle point problems by block {Gram--Schmidt} orthogonalization (1312.5277v1)

Published 18 Dec 2013 in math.NA

Abstract: Saddle point problems arise in many important practical applications. In this paper we propose and analyze some algorithms for solving symmetric saddle point problems which are based upon the block Gram-Schmidt method. In particular, we prove that the algorithm BCGS2 (Reorthogonalized Block Classical Gram-Schmidt) using Householder Q-R decomposition implemented in floating point arithmetic is backward stable, under a mild assumption on the matrix $M$. This means that the computed vector $\tilde z$ is the exact solution to a slightly perturbed linear system of equations $Mz = f$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.