Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering using Vector Membership: An Extension of the Fuzzy C-Means Algorithm (1312.4074v1)

Published 14 Dec 2013 in cs.CV

Abstract: Clustering is an important facet of explorative data mining and finds extensive use in several fields. In this paper, we propose an extension of the classical Fuzzy C-Means clustering algorithm. The proposed algorithm, abbreviated as VFC, adopts a multi-dimensional membership vector for each data point instead of the traditional, scalar membership value defined in the original algorithm. The membership vector for each point is obtained by considering each feature of that point separately and obtaining individual membership values for the same. We also propose an algorithm to efficiently allocate the initial cluster centers close to the actual centers, so as to facilitate rapid convergence. Further, we propose a scheme to achieve crisp clustering using the VFC algorithm. The proposed, novel clustering scheme has been tested on two standard data sets in order to analyze its performance. We also examine the efficacy of the proposed scheme by analyzing its performance on image segmentation examples and comparing it with the classical Fuzzy C-means clustering algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.