Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rings in which every nilpotent is central (1312.4024v1)

Published 14 Dec 2013 in math.RA

Abstract: In this paper, we introduce a class of rings in which every nilpotent element is central. This class of rings generalizes so-called reduced rings. A ring $R$ is called {\it central reduced} if every nilpotent element of $R$ is central. For a ring $R$, we prove that $R$ is central reduced if and only if $R[x_1,x_2,\ldots,x_n]$ is central reduced if and only if $R[[x_1,x_2,\ldots,x_n]]$ is central reduced if and only if $R[x_1,x_1{-1},x_2,x_2{-1},\ldots,x_n,x_n{-1}]$ is central reduced. Moreover, if $R$ is a central reduced ring, then the trivial extension $T(R,R)$ is central Armendariz.

Summary

We haven't generated a summary for this paper yet.