Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase transitions in probabilistic cellular automata (1312.3612v1)

Published 12 Dec 2013 in math-ph and math.MP

Abstract: We investigate the low-noise regime of a large class of probabilistic cellular automata, including the North-East-Center model of A. Toom. They are defined as stochastic perturbations of cellular automata with a binary state space and a monotonic transition function and possessing a property of erosion. These models were studied by A. Toom, who gave both a criterion for erosion and a proof of the stability of homogeneous space-time configurations. Basing ourselves on these major findings, we prove, for a set of initial conditions, exponential convergence of the induced processes toward the extremal invariant measure with a highly predominant state. We also show that this invariant measure presents exponential decay of correlations in space and in time and is therefore strongly mixing. This result is due to joint work with A. de Maere. For the two-dimensional probabilistic cellular automata in the same class and for the same extremal invariant measure, we give an upper bound to the probability of a block of cells with the opposite state. The upper bound decreases exponentially fast as the diameter of the block increases. This upper bound complements, for dimension 2, a lower bound of the same form obtained for any dimension greater than 1 by R. Fern\'andez and A. Toom. In order to prove these results, we use graphical objects that were introduced by A. Toom and we give a review of their construction.

Summary

We haven't generated a summary for this paper yet.