Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density Estimation in Infinite Dimensional Exponential Families (1312.3516v4)

Published 12 Dec 2013 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: In this paper, we consider an infinite dimensional exponential family, $\mathcal{P}$ of probability densities, which are parametrized by functions in a reproducing kernel Hilbert space, $H$ and show it to be quite rich in the sense that a broad class of densities on $\mathbb{R}d$ can be approximated arbitrarily well in Kullback-Leibler (KL) divergence by elements in $\mathcal{P}$. The main goal of the paper is to estimate an unknown density, $p_0$ through an element in $\mathcal{P}$. Standard techniques like maximum likelihood estimation (MLE) or pseudo MLE (based on the method of sieves), which are based on minimizing the KL divergence between $p_0$ and $\mathcal{P}$, do not yield practically useful estimators because of their inability to efficiently handle the log-partition function. Instead, we propose an estimator, $\hat{p}n$ based on minimizing the \emph{Fisher divergence}, $J(p_0\Vert p)$ between $p_0$ and $p\in \mathcal{P}$, which involves solving a simple finite-dimensional linear system. When $p_0\in\mathcal{P}$, we show that the proposed estimator is consistent, and provide a convergence rate of $n{-\min\left{\frac{2}{3},\frac{2\beta+1}{2\beta+2}\right}}$ in Fisher divergence under the smoothness assumption that $\log p_0\in\mathcal{R}(C\beta)$ for some $\beta\ge 0$, where $C$ is a certain Hilbert-Schmidt operator on $H$ and $\mathcal{R}(C\beta)$ denotes the image of $C\beta$. We also investigate the misspecified case of $p_0\notin\mathcal{P}$ and show that $J(p_0\Vert\hat{p}_n)\rightarrow \inf{p\in\mathcal{P}}J(p_0\Vert p)$ as $n\rightarrow\infty$, and provide a rate for this convergence under a similar smoothness condition as above. Through numerical simulations we demonstrate that the proposed estimator outperforms the non-parametric kernel density estimator, and that the advantage with the proposed estimator grows as $d$ increases.

Citations (123)

Summary

We haven't generated a summary for this paper yet.