Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Bayesian Passive-Aggressive Learning (1312.3388v1)

Published 12 Dec 2013 in cs.LG

Abstract: Online Passive-Aggressive (PA) learning is an effective framework for performing max-margin online learning. But the deterministic formulation and estimated single large-margin model could limit its capability in discovering descriptive structures underlying complex data. This pa- per presents online Bayesian Passive-Aggressive (BayesPA) learning, which subsumes the online PA and extends naturally to incorporate latent variables and perform nonparametric Bayesian inference, thus providing great flexibility for explorative analysis. We apply BayesPA to topic modeling and derive efficient online learning algorithms for max-margin topic models. We further develop nonparametric methods to resolve the number of topics. Experimental results on real datasets show that our approaches significantly improve time efficiency while maintaining comparable results with the batch counterparts.

Citations (38)

Summary

We haven't generated a summary for this paper yet.