Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A Stable Numerical Algorithm for the Brinkman Equations by Weak Galerkin Finite Element Methods (1312.2256v1)

Published 8 Dec 2013 in math.NA

Abstract: This paper presents a stable numerical algorithm for the Brinkman equations by using weak Galerkin (WG) finite element methods. The Brinkman equations can be viewed mathematically as a combination of the Stokes and Darcy equations which model fluid flow in a multi-physics environment, such as flow in complex porous media with a permeability coefficient highly varying in the simulation domain. In such applications, the flow is dominated by Darcy in some regions and by Stokes in others. It is well known that the usual Stokes stable elements do not work well for Darcy flow and vise versa. The challenge of this study is on the design of numerical schemes which are stable for both the Stokes and the Darcy equations. This paper shows that the WG finite element method is capable of meeting this challenge by providing a numerical scheme that is stable and accurate for both Darcy and the Stokes dominated flows. Error estimates of optimal order are established for the corresponding WG finite element solutions. The paper also presents some numerical experiments that demonstrate the robustness, reliability, flexibility and accuracy of the WG method for the Brinkman equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.