Generalised Eisenhart lift of the Toda chain (1312.2019v1)
Abstract: The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem, that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.