Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation (1312.1752v1)

Published 6 Dec 2013 in cs.NE and cs.AI

Abstract: Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two factors; the first is its own experience and the second is the collective experience of the whole swarm. PSO has been successfully used to solve many optimization problems. In this work we use PSO to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX). As with other time series representation methods, SAX results in loss of information when applied to represent time series. In this paper we use PSO to propose a new minimum distance WMD for SAX to remedy this problem. Unlike the original minimum distance, the new distance sets different weights to different segments of the time series according to their information content. This weighted minimum distance enhances the performance of SAX as we show through experiments using different time series datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (5)

Summary

We haven't generated a summary for this paper yet.