Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks (1312.1656v1)

Published 5 Dec 2013 in math.PR

Abstract: Let ${X_n}{n\in\N}$ be a Markov chain on a measurable space $\X$ with transition kernel $P$ and let $V:\X\r[1,+\infty)$. The Markov kernel $P$ is here considered as a linear bounded operator on the weighted-supremum space $\cB_V$ associated with $V$. Then the combination of quasi-compactness arguments with precise analysis of eigen-elements of $P$ allows us to estimate the geometric rate of convergence $\rho_V(P)$ of ${X_n}{n\in\N}$ to its invariant probability measure in operator norm on $\cB_V$. A general procedure to compute $\rho_V(P)$ for discrete Markov random walks with identically distributed bounded increments is specified.

Summary

We haven't generated a summary for this paper yet.