Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniqueness of diffusion operators and capacity estimates (1311.5281v1)

Published 21 Nov 2013 in math.AP

Abstract: Let $\Omega$ be a connected open subset of $\Rid$. We analyze $L_1$-uniqueness of real second-order partial differential operators $H=-\sumd_{k,l=1}\partial_k\,c_{kl}\,\partial_l$ and $K=H+\sumd_{k=1}c_k\,\partial_k+c_0$ on $\Omega$ where $c_{kl}=c_{lk}\in W{1,\infty}_{\rm loc}( \Omega), c_k\in L_{\infty,{\rm loc}}(\Omega)$, $c_0\in L_{2,{\rm loc}}(\Omega)$ and $C(x)=(c_{kl}(x))>0$ for all $x\in\Omega$. Boundedness properties of the coefficients are expressed indirectly in terms of the balls $B(r)$ associated with the Riemannian metric $C{-1}$ and their Lebesgue measure $|B(r)|$. \noindent\hspace{10mm}First we establish that if the balls $B(r)$ are bounded, the T\"acklind condition $\int\infty_Rdr\,r(\log|B(r)|){-1}=\infty$ is satisfied for all large $R$ and $H$ is Markov unique then $H$ is $L_1$-unique. If, in addition, $C(x)\geq \kappa\, (c{T}!\otimes\, c)(x)$ for some $\kappa>0$ and almost all $x\in\Omega$, $\divv c\in L_{\infty,{\rm loc}}(\Omega)$ is upper semi-bounded and $c_0$ is lower semi-bounded then $K$ is also $L_1$-unique. \noindent\hspace{10mm}Secondly, if the $c_{kl}$ extend continuously to functions which are locally bounded on $\partial\Omega$ and if the balls $B(r)$ are bounded we characterize Markov uniqueness of $H$ in terms of local capacity estimates and boundary capacity estimates. For example, $H$ is Markov unique if and only if for each bounded subset $A$ of $\overline\Omega$ there exist $\eta_n \in C_c\infty(\Omega)$ satisfying $\lim_{n\to\infty} |\one_A\Gamma(\eta_n)|1 = 0$, where $\Gamma(\eta_n)=\sumd{k,l=1}c_{kl}\,(\partial_k\eta_n)\,(\partial_l\eta_n)$, and $\lim_{n\to\infty}|\one_A (\one_\Omega-\eta_n )\, \varphi|_2 = 0$ for each $\varphi \in L_2(\Omega)$ or if and only if $\capp(\partial\Omega)=0$.

Summary

We haven't generated a summary for this paper yet.