Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Component Lasso (1311.4472v2)

Published 18 Nov 2013 in stat.ML and cs.LG

Abstract: We propose a new sparse regression method called the component lasso, based on a simple idea. The method uses the connected-components structure of the sample covariance matrix to split the problem into smaller ones. It then solves the subproblems separately, obtaining a coefficient vector for each one. Then, it uses non-negative least squares to recombine the different vectors into a single solution. This step is useful in selecting and reweighting components that are correlated with the response. Simulated and real data examples show that the component lasso can outperform standard regression methods such as the lasso and elastic net, achieving a lower mean squared error as well as better support recovery.

Citations (4)

Summary

We haven't generated a summary for this paper yet.