Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling Content Distributed Over Graphs (1311.3882v1)

Published 13 Nov 2013 in cs.SI and physics.soc-ph

Abstract: Despite recent effort to estimate topology characteristics of large graphs (i.e., online social networks and peer-to-peer networks), little attention has been given to develop a formal methodology to characterize the vast amount of content distributed over these networks. Due to the large scale nature of these networks, exhaustive enumeration of this content is computationally prohibitive. In this paper, we show how one can obtain content properties by sampling only a small fraction of vertices. We first show that when sampling is naively applied, this can produce a huge bias in content statistics (i.e., average number of content duplications). To remove this bias, one may use maximum likelihood estimation to estimate content characteristics. However our experimental results show that one needs to sample most vertices in the graph to obtain accurate statistics using such a method. To address this challenge, we propose two efficient estimators: special copy estimator (SCE) and weighted copy estimator (WCE) to measure content characteristics using available information in sampled contents. SCE uses the special content copy indicator to compute the estimate, while WCE derives the estimate based on meta-information in sampled vertices. We perform experiments to show WCE and SCE are cost effective and also ``{\em asymptotically unbiased}''. Our methodology provides a new tool for researchers to efficiently query content distributed in large scale networks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.