Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Tests of Multiple Hypotheses Controlling False Discovery and Nondiscovery Rates (1311.3350v2)

Published 14 Nov 2013 in stat.ME, math.ST, and stat.TH

Abstract: We propose a general and flexible procedure for testing multiple hypotheses about sequential (or streaming) data that simultaneously controls both the false discovery rate (FDR) and false nondiscovery rate (FNR) under minimal assumptions about the data streams which may differ in distribution, dimension, and be dependent. All that is needed is a test statistic for each data stream that controls the conventional type I and II error probabilities, and no information or assumptions are required about the joint distribution of the statistics or data streams. The procedure can be used with sequential, group sequential, truncated, or other sampling schemes. The procedure is a natural extension of Benjamini and Hochberg's (1995) widely-used fixed sample size procedure to the domain of sequential data, with the added benefit of simultaneous FDR and FNR control that sequential sampling affords. We prove the procedure's error control and give some tips for implementation in commonly encountered testing situations.

Summary

We haven't generated a summary for this paper yet.