Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Yetter-Drinfeld modules over weak multiplier bialgebras (1311.3027v1)

Published 13 Nov 2013 in math.QA

Abstract: We continue the study of the representation theory of a regular weak multiplier bialgebra with full comultiplication, started in arXiv:1306.1466, arXiv:1311.2730. Yetter-Drinfeld modules are defined as modules and comodules, with compatibility conditions that are equivalent to a canonical object being (weakly) central in the category of modules, and equivalent also to another canonical object being (weakly) central in the category of comodules. Yetter-Drinfeld modules are shown to constitute a monoidal category via the (co)module tensor product over the base (co)algebra. Finite dimensional Yetter-Drinfeld modules over a regular weak multiplier Hopf algebra with full comultiplication are shown to possess duals in this monoidal category.

Summary

We haven't generated a summary for this paper yet.