Factorization of S^3/Z_n partition function (1311.2371v3)
Abstract: We investigate S3/Z_n partition function of 3d N = 2 supersymmetric field theories. In a gauge theory the partition function is the sum of the contributions of sectors specified by holonomies, and we should carefully choose the relative signs among the contributions. We argue that the factorization to holomorphic blocks is a useful criterion to determine the signs and propose a formula for them. We show that the orbifold partition function of a general non-gauge theory is correctly factorized provided that we take appropriate relative signs. We also present a few examples of gauge theories. We point out that the sign factor for the orbifold partition function is closely related to a similar sign factor in the lens space index and the 3d index.