Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

A Quantitative Evaluation Framework for Missing Value Imputation Algorithms (1311.2276v1)

Published 10 Nov 2013 in cs.LG

Abstract: We consider the problem of quantitatively evaluating missing value imputation algorithms. Given a dataset with missing values and a choice of several imputation algorithms to fill them in, there is currently no principled way to rank the algorithms using a quantitative metric. We develop a framework based on treating imputation evaluation as a problem of comparing two distributions and show how it can be used to compute quantitative metrics. We present an efficient procedure for applying this framework to practical datasets, demonstrate several metrics derived from the existing literature on comparing distributions, and propose a new metric called Neighborhood-based Dissimilarity Score which is fast to compute and provides similar results. Results are shown on several datasets, metrics, and imputations algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.