Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Discontinuous Galerkin Finite Element Method for Directly Solving the Hamilton-Jacobi Equations (1311.1867v2)

Published 8 Nov 2013 in math.NA

Abstract: In this paper, we improve upon the discontinuous Galerkin (DG) method for Hamilton-Jacobi (HJ) equation with convex Hamiltonians in (Y. Cheng and C.-W. Shu, J. Comput. Phys. 223:398-415,2007) and develop a new DG method for directly solving the general HJ equations. The new method avoids the reconstruction of the solution across elements by utilizing the Roe speed at the cell interface. Besides, we propose an entropy fix by adding penalty terms proportional to the jump of the normal derivative of the numerical solution. The particular form of the entropy fix was inspired by the Harten and Hyman's entropy fix (A. Harten and J. M. Hyman. J. Comput. Phys. 50(2):235-269, 1983) for Roe scheme for the conservation laws. The resulting scheme is compact, simple to implement even on unstructured meshes, and is demonstrated to work for nonconvex Hamiltonians. Benchmark numerical experiments in one dimension and two dimensions are provided to validate the performance of the method.

Summary

We haven't generated a summary for this paper yet.