Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guaranteed sparse signal recovery with highly coherent sensing matrices (1311.0314v2)

Published 1 Nov 2013 in math.NA, cs.IT, and math.IT

Abstract: Compressive sensing is a methodology for the reconstruction of sparse or compressible signals using far fewer samples than required by the Nyquist criterion. However, many of the results in compressive sensing concern random sampling matrices such as Gaussian and Bernoulli matrices. In common physically feasible signal acquisition and reconstruction scenarios such as super-resolution of images, the sensing matrix has a non-random structure with highly correlated columns. Here we present a compressive sensing type recovery algorithm, called Partial Inversion (PartInv), that overcomes the correlations among the columns. We provide theoretical justification as well as empirical comparisons.

Citations (3)

Summary

We haven't generated a summary for this paper yet.