The Dual Gromov-Hausdorff Propinquity (1311.0104v3)
Abstract: Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes -isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and --- very importantly --- is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C-algebra theory.