Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree Nash Equilibria in the Network Creation Game (1310.8245v1)

Published 30 Oct 2013 in cs.GT and cs.DS

Abstract: In the network creation game with n vertices, every vertex (a player) buys a set of adjacent edges, each at a fixed amount {\alpha} > 0. It has been conjectured that for {\alpha} >= n, every Nash equilibrium is a tree, and has been confirmed for every {\alpha} >= 273n. We improve upon this bound and show that this is true for every {\alpha} >= 65n. To show this, we provide new and improved results on the local structure of Nash equilibria. Technically, we show that if there is a cycle in a Nash equilibrium, then {\alpha} < 65n. Proving this, we only consider relatively simple strategy changes of the players involved in the cycle. We further show that this simple approach cannot be used to show the desired upper bound {\alpha} < n (for which a cycle may exist), but conjecture that a slightly worse bound {\alpha} < 1.3n can be achieved with this approach. Towards this conjecture, we show that if a Nash equilibrium has a cycle of length at most 10, then indeed {\alpha} < 1.3n. We further provide experimental evidence suggesting that when the girth of a Nash equilibrium is increasing, the upper bound on {\alpha} obtained by the simple strategy changes is not increasing. To the end, we investigate the approach for a coalitional variant of Nash equilibrium, where coalitions of two players cannot collectively improve, and show that if {\alpha} >= 41n, then every such Nash equilibrium is a tree.

Citations (36)

Summary

We haven't generated a summary for this paper yet.