Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative Measures for Comparison of Phylogenetic Trees (1310.5202v2)

Published 19 Oct 2013 in q-bio.PE, cs.CE, and cs.CG

Abstract: In this paper we introduce and study three new measures for efficient discriminative comparison of phylogenetic trees. The NNI navigation dissimilarity $d_{nav}$ counts the steps along a "combing" of the Nearest Neighbor Interchange (NNI) graph of binary hierarchies, providing an efficient approximation to the (NP-hard) NNI distance in terms of "edit length". At the same time, a closed form formula for $d_{nav}$ presents it as a weighted count of pairwise incompatibilities between clusters, lending it the character of an edge dissimilarity measure as well. A relaxation of this formula to a simple count yields another measure on all trees --- the crossing dissimilarity $d_{CM}$. Both dissimilarities are symmetric and positive definite (vanish only between identical trees) on binary hierarchies but they fail to satisfy the triangle inequality. Nevertheless, both are bounded below by the widely used Robinson-Foulds metric and bounded above by a closely related true metric, the cluster-cardinality metric $d_{CC}$. We show that each of the three proposed new dissimilarities is computable in time $O(n2)$ in the number of leaves $n$, and conclude the paper with a brief numerical exploration of the distribution over tree space of these dissimilarities in comparison with the Robinson-Foulds metric and the more recently introduced matching-split distance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.