Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aspects of randomness in neural graph structures (1310.5062v1)

Published 18 Oct 2013 in physics.soc-ph, cs.SI, and q-bio.NC

Abstract: In the past two decades, significant advances have been made in understanding the structural and functional properties of biological networks, via graph-theoretic analysis. In general, most graph-theoretic studies are conducted in the presence of serious uncertainties, such as major undersampling of the experimental data. In the specific case of neural systems, however, a few moderately robust experimental reconstructions do exist, and these have long served as fundamental prototypes for studying connectivity patterns in the nervous system. In this paper, we provide a comparative analysis of these "historical" graphs, both in (unmodified) directed and (often symmetrized) undirected forms, and focus on simple structural characterizations of their connectivity. We find that in most measures the networks studied are captured by simple random graph models; in a few key measures, however, we observe a marked departure from the random graph prediction. Our results suggest that the mechanism of graph formation in the networks studied is not well-captured by existing abstract graph models, such as the small-world or scale-free graph.

Citations (4)

Summary

We haven't generated a summary for this paper yet.