2000 character limit reached
Quenched invariance principle for simple random walk on clusters in correlated percolation models (1310.4764v3)
Published 17 Oct 2013 in math.PR and math.CO
Abstract: We prove quenched invariance principle for simple random walk on the unique infinite percolation cluster for a general class of percolation models on Zd, d>=2, with long-range correlations introduced in arXiv:1212.2885, solving one of the open problems from there. This gives new results for random interlacements in dimension d>=3 at every level, as well as for the vacant set of random interlacements and the level sets of the Gaussian free field in the regime of the so-called local uniqueness (which is believed to coincide with the whole supercritical regime). An essential ingredient of our proof is a new isoperimetric inequality for correlated percolation models.