Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit schemes for parabolic and hyperbolic equations (1310.4046v1)

Published 15 Oct 2013 in cs.NA

Abstract: Standard explicit schemes for parabolic equations are not very convenient for computing practice due to the fact that they have strong restrictions on a time step. More promising explicit schemes are associated with explicit-implicit splitting of the problem operator (Saul'yev asymmetric schemes, explicit alternating direction (ADE) schemes, group explicit method). These schemes belong to the class of unconditionally stable schemes, but they demonstrate bad approximation properties. These explicit schemes are treated as schemes of the alternating triangle method and can be considered as factorized schemes where the problem operator is splitted into the sum of two operators that are adjoint to each other. Here we propose a multilevel modification of the alternating triangle method, which demonstrates better properties in terms of accuracy. We also consider explicit schemes of the alternating triangle method for the numerical solution of boundary value problems for hyperbolic equations of second order. The study is based on the general theory of stability (well-posedness) for operator-difference schemes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.