Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Coordinated Charging Decision Algorithm for Electric Vehicles without Future Information (1310.3580v4)

Published 14 Oct 2013 in cs.DS

Abstract: The large-scale integration of plug-in electric vehicles (PEVs) to the power grid spurs the need for efficient charging coordination mechanisms. It can be shown that the optimal charging schedule smooths out the energy consumption over time so as to minimize the total energy cost. In practice, however, it is hard to smooth out the energy consumption perfectly, because the future PEV charging demand is unknown at the moment when the charging rate of an existing PEV needs to be determined. In this paper, we propose an Online cooRdinated CHARging Decision (ORCHARD) algorithm, which minimizes the energy cost without knowing the future information. Through rigorous proof, we show that ORCHARD is strictly feasible in the sense that it guarantees to fulfill all charging demands before due time. Meanwhile, it achieves the best known competitive ratio of 2.39. To further reduce the computational complexity of the algorithm, we propose a novel reduced-complexity algorithm to replace the standard convex optimization techniques used in ORCHARD. Through extensive simulations, we show that the average performance gap between ORCHARD and the offline optimal solution, which utilizes the complete future information, is as small as 14%. By setting a proper speeding factor, the average performance gap can be further reduced to less than 6%.

Citations (121)

Summary

We haven't generated a summary for this paper yet.