Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disease Mapping via Negative Binomial Regression M-quantiles (1310.3403v1)

Published 12 Oct 2013 in stat.ME

Abstract: We introduce a semi-parametric approach to ecological regression for disease mapping, based on modelling the regression M-quantiles of a Negative Binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both spatial heterogeneity and spatial clustering. A simulation experiment based on the well-known Scottish lip cancer data set is used to compare the M-quantile modelling approach and a random effects modelling approach for disease mapping. This suggests that the M-quantile approach leads to predicted relative risks with smaller root mean square error than standard disease mapping methods. The paper concludes with an illustrative application of the M-quantile approach, mapping low birth weight incidence data for English Local Authority Districts for the years 2005-2010.

Summary

We haven't generated a summary for this paper yet.