Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization (1310.2357v1)

Published 9 Oct 2013 in q-bio.MN, cs.SI, and physics.soc-ph

Abstract: Detecting communities, densely connected groups may contribute to unravel the underlying relationships among the units present in diverse biological networks (e.g., interactome, coexpression networks, ecological networks, etc.). We recently showed that communities can be very precisely characterized by maximizing Surprise, a global network parameter. Here we present SurpriseMe, a tool that integrates the outputs of seven of the best algorithms available to estimate the maximum Surprise value. SurpriseMe also generates distance matrices that allow to visualize the relationships among the solutions generated by the algorithms. We show that the communities present in small and medium-sized networks, with up to 10.000 nodes, can be easily characterized: on standard PC computers, these analyses take less than an hour. Also, four of the algorithms may quite rapidly analyze networks with up to 100.000 nodes, given enough memory resources. Because of its performance and simplicity, SurpriseMe is a reference tool for community structure characterization.

Citations (20)

Summary

We haven't generated a summary for this paper yet.