Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Invariant Subspace Theorem and Invariant Subspaces of Analytic Reproducing Kernel Hilbert Spaces - II (1310.1014v2)

Published 3 Oct 2013 in math.FA, math.CV, math.OA, and math.SP

Abstract: This paper is a follow-up contribution to our work [20] where we discussed some invariant subspace results for contractions on Hilbert spaces. Here we extend the results of [20] to the context of n-tuples of bounded linear operators on Hilbert spaces. Let T = (T_1, \ldots, T_n) be a pure commuting co-spherically contractive n-tuple of operators on a Hilbert space \mathcal{H} and \mathcal{S} be a non-trivial closed subspace of \mathcal{H}. One of our main results states that: \mathcal{S} is a joint T-invariant subspace if and only if there exists a partially isometric operator \Pi \in \mathcal{B}(H2_n(\mathcal{E}), \mathcal{H})$ such that $\mathcal{S} = \Pi H2_n(\mathcal{E})$, where H2_n is the Drury-Arveson space and \mathcal{E} is a coefficient Hilbert space and T_i \Pi = \Pi M_{z_i}, i = 1, \ldots, n. In particular, our work addresses the case of joint shift invariant subspaces of the Hardy space and the weighted Bergman spaces over the unit ball in \mathbb{C}n.

Summary

We haven't generated a summary for this paper yet.