Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
34 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Random normal matrices, Bergman kernel and projective embeddings (1309.7333v2)

Published 27 Sep 2013 in hep-th, math-ph, math.DG, and math.MP

Abstract: We investigate the analogy between the large N expansion in normal matrix models and the asymptotic expansion of the determinant of the Hilb map, appearing in the study of critical metrics on complex manifolds via projective embeddings. This analogy helps to understand the geometric meaning of the expansion of matrix model free energy and its relation to gravitational effective actions in two dimensions. We compute the leading terms of the free energy expansion in the pure bulk case, and make some observations on the structure of the expansion to all orders. As an application of these results, we propose an asymptotic formula for the Liouville action, restricted to the space of the Bergman metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)