Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Collaborative Filtering Based Approach for Recommending Elective Courses (1309.6908v1)

Published 26 Sep 2013 in cs.IR

Abstract: In management education programmes today, students face a difficult time in choosing electives as the number of electives available are many. As the range and diversity of different elective courses available for selection have increased, course recommendation systems that help students in making choices about courses have become more relevant. In this paper we extend the concept of collaborative filtering approach to develop a course recommendation system. The proposed approach provides student an accurate prediction of the grade they may get if they choose a particular course, which will be helpful when they decide on selecting elective courses, as grade is an important parameter for a student while deciding on an elective course. We experimentally evaluate the collaborative filtering approach on a real life data set and show that the proposed system is effective in terms of accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sanjog Ray (1 paper)
  2. Anuj Sharma (63 papers)
Citations (52)