Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Rank Aggregation (1309.6852v1)

Published 26 Sep 2013 in cs.LG, cs.IR, and stat.ML

Abstract: This paper addresses the problem of rank aggregation, which aims to find a consensus ranking among multiple ranking inputs. Traditional rank aggregation methods are deterministic, and can be categorized into explicit and implicit methods depending on whether rank information is explicitly or implicitly utilized. Surprisingly, experimental results on real data sets show that explicit rank aggregation methods would not work as well as implicit methods, although rank information is critical for the task. Our analysis indicates that the major reason might be the unreliable rank information from incomplete ranking inputs. To solve this problem, we propose to incorporate uncertainty into rank aggregation and tackle the problem in both unsupervised and supervised scenario. We call this novel framework {stochastic rank aggregation} (St.Agg for short). Specifically, we introduce a prior distribution on ranks, and transform the ranking functions or objectives in traditional explicit methods to their expectations over this distribution. Our experiments on benchmark data sets show that the proposed St.Agg outperforms the baselines in both unsupervised and supervised scenarios.

Citations (23)

Summary

We haven't generated a summary for this paper yet.