Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstraction and Learning for Infinite-State Compositional Verification (1309.5140v1)

Published 20 Sep 2013 in cs.LO and cs.FL

Abstract: Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.

Citations (3)

Summary

We haven't generated a summary for this paper yet.