Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian Manifolds (1309.4734v1)

Published 18 Sep 2013 in math.NA

Abstract: A local convergence analysis of Inexact Newton's method with relative residual error tolerance for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. We prove that under local assumptions, the inexact Newton method with a fixed relative residual error tolerance converges Q -linearly to a singularity of the vector field under consideration. Using this result we show that the inexact Newton method to find a zero of an analytic vector field can be implemented with a fixed relative residual error tolerance. In the absence of errors, our analysis retrieve the classical local theorem on the Newton method in Riemannian context.

Summary

We haven't generated a summary for this paper yet.