Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Self-Organizing Maps for Sentiment Analysis (1309.3946v1)

Published 16 Sep 2013 in cs.IR, cs.CL, and cs.NE

Abstract: Web 2.0 services have enabled people to express their opinions, experience and feelings in the form of user-generated content. Sentiment analysis or opinion mining involves identifying, classifying and aggregating opinions as per their positive or negative polarity. This paper investigates the efficacy of different implementations of Self-Organizing Maps (SOM) for sentiment based visualization and classification of online reviews. Specifically, this paper implements the SOM algorithm for both supervised and unsupervised learning from text documents. The unsupervised SOM algorithm is implemented for sentiment based visualization and classification tasks. For supervised sentiment analysis, a competitive learning algorithm known as Learning Vector Quantization is used. Both algorithms are also compared with their respective multi-pass implementations where a quick rough ordering pass is followed by a fine tuning pass. The experimental results on the online movie review data set show that SOMs are well suited for sentiment based classification and sentiment polarity visualization.

Citations (15)

Summary

We haven't generated a summary for this paper yet.