Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compound Poisson Processes, Latent Shrinkage Priors and Bayesian Nonconvex Penalization (1308.6069v3)

Published 28 Aug 2013 in stat.ML and stat.ME

Abstract: In this paper we discuss Bayesian nonconvex penalization for sparse learning problems. We explore a nonparametric formulation for latent shrinkage parameters using subordinators which are one-dimensional L\'{e}vy processes. We particularly study a family of continuous compound Poisson subordinators and a family of discrete compound Poisson subordinators. We exemplify four specific subordinators: Gamma, Poisson, negative binomial and squared Bessel subordinators. The Laplace exponents of the subordinators are Bernstein functions, so they can be used as sparsity-inducing nonconvex penalty functions. We exploit these subordinators in regression problems, yielding a hierarchical model with multiple regularization parameters. We devise ECME (Expectation/Conditional Maximization Either) algorithms to simultaneously estimate regression coefficients and regularization parameters. The empirical evaluation of simulated data shows that our approach is feasible and effective in high-dimensional data analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.