Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers (1308.5294v1)

Published 24 Aug 2013 in math.OC and cs.NA

Abstract: In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multi-block problem into an equivalent two-block problem (either in the primal domain or in the dual domain) and then solves it using the standard two-block ADMM. In particular, we derive convergence results for this two-block ADMM approach to solve multi-block separable convex minimization problems, including an improved O(1/\epsilon) iteration complexity result. Moreover, we compare the numerical efficiency of this approach with the standard multi-block ADMM on several separable convex minimization problems which include basis pursuit, robust principal component analysis and latent variable Gaussian graphical model selection. The numerical results show that the multiple-block ADMM, although lacks theoretical convergence guarantees, typically outperforms two-block ADMMs.

Citations (82)

Summary

We haven't generated a summary for this paper yet.