Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COAST: A Convex Optimization Approach to Stress-Based Embedding (1308.5218v2)

Published 23 Aug 2013 in cs.DM

Abstract: Visualizing graphs using virtual physical models is probably the most heavily used technique for drawing graphs in practice. There are many algorithms that are efficient and produce high-quality layouts. If one requires that the layout also respect a given set of non-uniform edge lengths, however, force-based approaches become problematic while energy-based layouts become intractable. In this paper, we propose a reformulation of the stress function into a two-part convex objective function to which we can apply semi-definite programming (SDP). We avoid the high computational cost associated with SDP by a novel, compact re-parameterization of the objective function using the eigenvectors of the graph Laplacian. This sparse representation makes our approach scalable. We provide experimental results to show that this method scales well and produces reasonable layouts while dealing with the edge length constraints.

Citations (17)

Summary

We haven't generated a summary for this paper yet.