Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Truthful Scheduling Mechanisms for Powering Mobile Crowdsensing (1308.4501v1)

Published 21 Aug 2013 in cs.NI

Abstract: Mobile crowdsensing leverages mobile devices (e.g., smart phones) and human mobility for pervasive information exploration and collection; it has been deemed as a promising paradigm that will revolutionize various research and application domains. Unfortunately, the practicality of mobile crowdsensing can be crippled due to the lack of incentive mechanisms that stimulate human participation. In this paper, we study incentive mechanisms for a novel Mobile Crowdsensing Scheduling (MCS) problem, where a mobile crowdsensing application owner announces a set of sensing tasks, then human users (carrying mobile devices) compete for the tasks based on their respective sensing costs and available time periods, and finally the owner schedules as well as pays the users to maximize its own sensing revenue under a certain budget. We prove that the MCS problem is NP-hard and propose polynomial-time approximation mechanisms for it. We also show that our approximation mechanisms (including both offline and online versions) achieve desirable game-theoretic properties, namely truthfulness and individual rationality, as well as O(1) performance ratios. Finally, we conduct extensive simulations to demonstrate the correctness and effectiveness of our approach.

Citations (82)

Summary

We haven't generated a summary for this paper yet.