Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposable Specht modules for the Iwahori-Hecke algebra $\mathscr{H}_{\mathbb{F},-1}(\mathfrak{S}_n)$ (1308.4296v2)

Published 20 Aug 2013 in math.RT

Abstract: Let $S_\lambda$ denote the Specht module defined by Dipper and James for the Iwahori-Hecke algebra $\mathscr{H}n$ of the symmetric group $\mathfrak{S}_n$. When $e=2$ we determine the decomposability of all Specht modules corresponding to hook partitions $(a,1b)$. We do so by utilising the Brundan-Kleshchev isomorphism between $\mathscr{H}$ and a Khovanov-Lauda-Rouquier algebra and working with the relevant KLR algebra, using the set-up of Kleshchev-Mathas-Ram. When $n$ is even, we easily arrive at the conclusion that $S\lambda$ is indecomposable. When $n$ is odd, we find an endomorphism of $S_\lambda$ and use it to obtain a generalised eigenspace decomposition of $S_\lambda$.

Summary

We haven't generated a summary for this paper yet.