Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cremmer--Gervais cluster structure on $SL_n$ (1308.2558v1)

Published 12 Aug 2013 in math.QA

Abstract: We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on $\G$ corresponds to a cluster structure in $\O(\G)$. We have shown before that this conjecture holds for any $\G$ in the case of the standard Poisson--Lie structure and for all Belavin-Drinfeld classes in $SL_n$, $n<5$. In this paper we establish it for the Cremmer-Gervais Poisson-Lie structure on $SL_n$, which is the least similar to the standard one. Besides, we prove that on $SL_3$ the cluster algebra and the upper cluster algebra corresponding to the Cremmer-Gervais cluster structure do not coincide, unlike the case of the standard cluster structure. Finally, we show that the positive locus with respect to the Cremmer-Gervais cluster structure is contained in the set of totally positive matrices.

Summary

We haven't generated a summary for this paper yet.